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Abstract. A recently proposed kinetic theory for a dense fluid of square-well particles is 
linearised and shown to satisfy time-reversal symmetry. The hydrodynamic modes and their 
extensions to short wavelengths are calculated with the aid of equilibrium correlation 
functions which are taken from molecular dynamics simulations and are presented as well. 
Under most conditions, potential energy fluctuations decay slowly in comparison with 
velocity fluctuations. 

I. Introduction 

A long-standing problem in kinetic theory of fluids at moderate and high densities is how 
to treat the effects of a finite interaction range. The most apparent complications 
resulting from this are: 

(i) at high densities most of the time particles interact with several particles simul- 
taneously; 

(ii) energy density is not determined by the one-particle distribution function alone 
since potential energy density is an essential part of it. 

One way of dealing with the first complication is to separate the pair potential into a 
strong repulsive part and a weak tail. The interaction through the repulsive part is treated 
as an instantaneous hard-sphere-like collision and the interaction through the weak tail 
is approximated by a mean force obtained by averaging the pair force with the non- 
equilibrium pair correlation function. The resulting theories, kinetic reference theory 
and kinetic variational theory (Karkheck and Stell 1981) can be used to obtain quite 
good predictions for transport coefficients of simple fluids such as noble gases, but there 
remain a few serious problems. First these theories do not allow for an irreversible 
exchange of kinetic and potential energy and as a result cannot describe a full relaxation 
‘CO equilibrium. Secondly their results depend sensitively on the precise choice of the 
separation between repulsive part and weak tail and there are no clear physical argu- 
ments determining this separation uniquely. Another way of avoiding the complications 
of many-body interactions and keeping a non-zero potential energy density is to consider 
a system of particles with painvise square-well interactions. That is, the pair interaction 
is of the form q(r{ , )  = x if rl, < 0, qP(r,) = --E if 0 < rl, < R and ~ ( r , )  = 0 if rl, > R. At 
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238 J A Leegwater et a1 

low densities the Boltzmann equation takes into account the full two-body dynamics 
with the exception of bound states (Karkheck and Steli 1983), but at high densities, in 
order to make the system tractable one has to ignore correlations between subsequent 
partial collisions (i.e. collisions either at the inner core rij = a o r  at the square-well edge 
rii = R) .  If the density is high enough, between two subsequent collisions of a pair ij, 
each of the particles i and j will most of the time suffer several collisions with other 
particles (mean free path GR - a )  in which case this assumption seems reasonable. 
Davis and co-workers were the first to base a kinetic theory on these ideas (Davis et a1 
1961), but their kinetic theory suffers from the problem that energy is not strictly 
conserved. An improved version avoiding this problem has been derived recently by 
Karkheck et a1 (1985). 

In the present paper we linearise their equations and determine the smallest eigen- 
values and corresponding eigenfunctions as a function of wavenumber. One of our 
remarkable findings is the slowness of the exchange between kinetic and potential 
energy. Basically this is a non-hydrodynamic process; the decay rate for this process 
does not tend to zero with vanishing wavenumber. For non-zero wavenumber, however, 
the decay rate of the eigen-function that is mainly responsible for this decay becomes as 
small as or even smaller than the decay rates of extended hydrodynamic modes. 

The paper is organised as follows: in § 2 we give the kinetic equations of Karkheck 
er al,  in § 3 we present some results for the functional derivatives in equilibrium that will 
be needed, in § 4 we linearise the kinetic equations, in § 5 we calculate their eigenvalues 
and corresponding eigenfunctions, and in § 6 we state our conclusions. 

2. Kinetic theory 

The hierarchy equations for the one-particle distribution function f ,  (x, f), with 
x = ( r ,  U ) ,  and the potential energy density 

(2.1) 

for the square-well interaction are 

x [0(uI2  - u,)6(r12 - R - )  - @ ( - U , ,  * P12)6(rl2- R + ) ] .  (2.3) 
We have adopted the notation of Karkheck et a1 (1985). Closure of these hierarchy 
equations can be obtained using the maximisation-of-entropy procedure (Karkheck et 
aZ1985). In this procedure it is assumed that the phase space density plv(xl, . . . , xN, t )  
is given as 
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where A(x, t )  and P(r, t )  are Lagrange multiplier fields that have to be chosen such that 
the one-particle distribution function fl(x, t )  and the potential energy density u(r,  t )  are 
reproduced correctly. This yields the closure approximation for f2 

f P1)(x15 x2 3 t )  = fl (XI 2 t> f l  (x2 > tk2(r, , y2 1 %  P )  (2.5) 
where the pair correlation function g2 depends functionally on P(r, t )  and the local 
number density n(r, t ) .  The quantityp(r, t )  is the Lagrange multiplier field corresponding 
to the potential energy (see (2.4)) and JCBP(r, t )  can be interpreted as the inverse of the 
local potential energy temperature. In equilibrium the potential energy temperature 
equals the kinetic energy temperature, but out of equilibrium the two temperatures are 
not necessarily the same (van Beijeren et a1 1988). From (2.5) we see that pre-collisional 
velocity correlations are not taken into account. 

The aim of this paper is to calculate the collective modes of the linearised kinetic 
theory, which can be distinguished into hydrodynamic modes, their extension to short 
wavelengths (extended hydrodynamic modes) and kinetic modes. To this end we define 
deviations from equilibrium through 

P(r, t )  = Peq + Sp(r,  t). (2.10) 

Here we have used the fact that in equilibrium I ,  and /3 are constant throughout the fluid. 
In this paper we will only consider fluids that are uniform in equilibrium so also n and U 

are constant throughout the fluid. We will present the linearised kinetic equations for 
the independent variables h(x, t )  and 6P(r, t ) ,  but first we derive some equilibrium 
relations that wili be needed. 

5. Equiiibrium resuits 

Up to linear order we have 

or equivalently 

where C, is defined as 
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Consequently 

The function C, is similar to a function C, related to the familiar Ornstein-Zernike direct 
correlation function C(ri, r2) as 

(3.5) 

Notice that both Cn and C, are the derivatives of a Lagrange multiplier with respect to 
its (local) thermodynamic conjugate. 

Substituting (2.6), (2.7) and (2.10) into (2.5) we have up to linear order 

(3.6) 

The functional derivatives taken in equilibrium are well defined if for p I y  we use the 
explicit form (2.4), obtained from the maximisation-of-entropy procedure. Details of 
the calculation can be found in Appendix 1. The results are 



Linear kinetic theory of the square-well fluid 241 

In a similar way some other functional derivatives can be obtained as 

(3.10) 

= -[(u(r1)u(r2)) - u ( ~ ~ ) u ( ~ @ ]  + 1 dr,  1 dr4 [(u(rl)g(rg)) - u(eq)n(eq)] 
J 

x Cn(r3,  r4)[(u(r2)12.(r4)) - ~ ( ~ q ) n ( ~ q ) ] .  (3.11) 

Here (. . .) denotes an equilibrium average and E and U_ are the microscopic number 
density and potential energy density 

(3.12) 

(3.13) 

We still have to solve (3.5) and (3.4) in order to express Cn and C, in terms of the 
correlation Fiiictions (nIz), (nu> and (uu). Ir, a spat,ia!ly inhomogeneous fluid this is a 
difficult problem; in the homogeneous case it is fairly straightforward if one uses Fourier 
transforms. 

Defining the Fourier transform of an arbitrary function A of r as 

A(k)  = d r  e-'k'rA(r) ! 
and combining the relations (3.5) and (3.9) we find for Cn 

1 dk' (n(k)n(k'))C,(k',  k") = 6 ( k  - k"). 

For a uniform fluid one has 

(n(k)rz(k')) = w + %"(-k)) 
so 

6 ( k  + k' )  
C , ( k ,  k ' )  = 

(12. (k)n(-k)) '  

If we define 

(3.14) 

(3.15) 

(3.16) 

(3.17) 
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the analogue for C, becomes 
6(k + k‘) 

C,(k, k’) = - - 
’ 

(3.18) 

We want to stress that the use of a Fourier transform essentially depends on the uni- 
formity of the fluid. Solving (3.5) and (3.4) for a non-uniform fluid is difficult, even if 
the correlation functions (nn) (nu) and (uu) are known. 

For a uniform fluid the required correlation functions are 

(3.19) 

(3.20) 

(3.21) 

As far as we are aware there is no equilibrium theory available for the correlation 
functions S,  and S,. One of us (JM) has obtained them from molecular dynamics 
simulations. The method and further details have been described elsewhere (Michels 
and Trappeniers 1980). Typical results for three temperatures at no3 = 0.8 and three 
densities at B E  = 0.667 are presented in figures 1-6. 

4. The linearised kinetic equations 

Substitution of (2.6); (3.6), (3.7) and (3.8) in (2.2) and (2.3) yields the linearised kinetic 
equations for the one-particle distribution function; 

no”; + U1 *Vljh(Xl, f) 

and for the potential energy density 

a (f.12) - 6u(rl ,  t )  = -Vl  * du ,  J’ dx2 u 1  -ffq)(xl, x2)h(x1, t )  
a t  2 

(4.2) 
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Figure 1. The Fourier transform of the pair correlation function S ( k )  at nu3 = 0.8, R = 1% 
for three well depths. Full curve: Percus-Yevick approximation for the hard-sphere pair 
correlation function. 
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Figure 2. The correlation function S,(k) at nu: = 0.8, R = 1.50 for three well depths. The 
full curve is an interpolation for PE = i. 
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Figure 3. The correlation function S,(k)  at nu3 = 0.8, R = 1.k  for three well depths. 
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Figure 4. The Fourier transform of the pair correlation function S ( k )  at BE = 0.667, R = 
1 So for three densities. The f d l  curves are numerical interpolations. 
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Figure 5. The correlation function S , ( k )  at PE = 0.667. R = 1.5ufor three densities. 
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Figure 6. The correlation function S , ( k )  at PE = 0.667. R = 1.5, for three densities. 
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where no = d e s )  and fm is the Maxwell-Boltzmann velocity distribution. In Appendix 2 
we show how these can be simplified considerably by using the square-well analogue of 
the BGY hierarchy, the equilibrium version of the BBGKY hierarchy. A similar sim- 
plification has been obtained before for the revised Enskog equation (van Beijeren and 
Ernst 1973). Using 6/3 instead of 6u  as independent variable we obtain as final forms for 
the linearised kinetic equations 

\ 

+ ni(~/2) 
x [6g(r, .  t )  + sg(r, .  t )][@(u12 - ii2 - U,) - e - W / - u  \ !1 id1 

dx2 fm(u1)fni(u2)d(r12 - RjIul2 - j l21g2(R+) J 

(4.4) 
where uo = d e s ) .  Here we only consider spatially uniform fluids, hence each wavelength 
may be considered separately. The Fourier transforms of (4.3) and (4.4) are 

.- 
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and 

+ exp( -ik * r12) h(k ,  U : ,  t )  - ___ i no 1 
&(k, t )  

a0 
x r h(k, U:, t )  - ~ L 

x [I i- exp( -ik * r 1 2 ) ] 8 g ( k ,  t)[O(u12 * j 1 2  - U , )  

- e+€@( - U l z  i12)] (4.6) 
where we have used (3.101, (3.11), (3.16), (3.18) and (3.21). These equations are of the 
form 

Because of its resemblance to the Enskog operator for hard spheres we wiil call L the 
Enskog-like operator. 

5. The collective modes 

The kinetic equations are linear, so one can consider the eigen-functions of L.  As there 
are five conserved quantities (particle number, momentum and total energy) we know 
that, if the linear kinetic equations are to obey the conservation laws, five eigenvalues 
will tend to zero as k tends to zero. Partly because potential energy density is treated 
explicitly, this can indeed be shown to be the case. 

We will use the so-called moment method (Kamgar Parsi and Cohen 1986) to obtain 
approximate solutions of the linearised kinetic equations. The first step is the expansion 
of h(k, U ,  t )  in a set of polynomials 

where we have chosen the polynomials q as 

?) (U) = N,,L',: ( 0 2 )  U Y/ ,  (6). (5 .2)  

Here Lri is the associated Laguerre or Sonine polynomial, Yim is a spherical harmonic 
and N,, a normalisation constant. This is a standard choice (Kamgar Parsi and Cohen 
1986). Because of rotational invariance around k we may consider each value of m 
separately. We now define an inner product as an equilibrium expectation value 

( q o  IYb) = (6: 6 b )  (5 .3)  
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The expression (5.5) is inferred from equation (3.2). The are orthogonal, that is 

( 6 a l & b )  = c a 8 d  (5.6) 
for instance 

(6, IpB) = (6'o*ooo6'B) 

= O  (5.7) 

(cf. (3.10) and (3.5)). It is straightforward to show that 

ca = i all (rlm) except (000) - n (5.8) 

c, = S(k )  (5.9) 
CB = C,(k).  (5.10) 

The inner product defined by (5.3) is a natural choice, so in the sequel of this paper we 
will use a basis normalised with respect to fluctuations 

(5.11) 

Since the polynomials y are complete in the space of square-integrable functions, the 
iineariseci kinetic equations are formaiiy equivaient to 

(5.12) 

where we have used the notation hp = 8/3. With respect to the unhatted basis the Enskog- 
like operator can be shown to satisfy the symmetry relation 

L u b ( k )  = E a E b L i c 7 ( k )  (5.13) 

a 
-h , ( t )  = c L,(k)h,(t)  i,i = B ,  (rim) 
at I 

where 
1 for /3 and for 1 even 

-1 for 1 odd. E . = [  

This is due to the fact that the closure approximation (2.4) does not break time-reversal 
symmetry. Perhaps the most straightforward way to see this is by noting that the linear 
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kinetic equations can also be derived by using standard projection operators. The 
Enskog-like operator can also be derived as 

L a b @ )  = (@; L@b) (5.14) 

where L is the pseudo-Liouville operator (Karkheck et aZ1985). This relation has been 
introduced by Konijnendijk and van Leeuwen (1973) by methods similar to ours, 
whereas Cohen and de Schepper (1987) arrived at the same results but defined their 
inner product with the aid of pair correlation functions instead of N-body averages. 
Our method generalises this to arbitrary Lioilville and pseudo-Liouville operators and 
arbitrary phase functions Q0. 

We have written a computer program to calculate the matrix elements of the Enskog- 
like operator. The first few matrix elements are given in table 1. 

We have obtained approximate solutions of (4.5) and (4.6) by considering only a 
finite submatrix of L and computing the eigenvalues and eigenfunctions numerically. 
This is called the moment method. We have chosen this method, as our main interest 
here is to study the kinetic equations (4.5) and (4.6) in the long- and intermediate- 
wavelength regime at high densities. It is known (Kamgar Parsi and Cohen 1986) that 
the moment method works quite well in this regime. 

In figure 7 we give the eigenvalues zi of the lowest-lying longitudinal ( m  = 0) modes 
multiplied by t, = to/g(a). Notice that tE is the mean free time between collisions at the 
hard core. Among the modes are the heat mode, two sound modes and their extensions 
to finite wavelengths, kinetic modes and a mode describing mainly the exchange of 
kinetic and potential energy. This exchange mode is not present in the Boltzmann 
equation or the Enskog equation. 

Table 1. Some matrix elements of the Enskog-like operator 

Here;,, is a spherical Bessel function: K,  is a modified Bessel function. 
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Figure 7 .  Reduced real (full curves) and imaginary (broken curve) parts of the lowest-lying 
longitudinal (m = 0) modes as a function of reduced wavenumber using the full linear kinetic 
equations.HerePE = 0.667,R = 1.5uandno' = 0.8. Forktendingtozerowehaveidentified 
the heat mode (h), two complex conjugate sound modes (s), and the energy exchange mode 
(x). Only for the extended sound modes. is the imaginary part of the eigenvalue given. 

In our calculations we have used the 17 X 17 dimensional part of the Enskog-like 
operator on the basis (B ,  @p,lo) where (2r + l )  G 6. By varying the number of polynomials 
we estimated the accuracy of our results. The low-lying (extended hydrodynamic and 
exchange) modes were f0un.d to be accurate up to a few per cent. We did not extend our 
calculations beyond k a  - 14, owing to convergence problems. In figure 8 we give the 
absolute values of components of the lowest-lying modes along the normalised base 
vectors indicated. In figure 9 we present the eigenvalues that are obtained if one sets the 
potential energy density to be equal to its equilibrium value at all times. In this case total 
energy is no longer conserved, which is manifested by the fact that only two longitudinal 
modes tend to zero as k tends to zero. Finally in figure 10 we show the eigenvalues at a 
lower density. 

0.9 

0.6 

0.3 

0 6 12 

k o  

Figure 8. Absolute values of the projections of the mode eigenfunctions of the lowest-lying 
mode along the normalised base vectors indicated for fluid parameters as in figure 7 .  
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0 6 12 

k o  

Figure 9. Reduced real (full curves) and imaginary (broken curve) parts of the lowest-lying 
longitudinal modes using the !inear kinetic equations, but keeping the component along /j 
zero. Energy non-conservation is manifested by the fact that only two modes tend to zero as 
k tends to zero. Near k = 0 the real parts of the three lowest-lying eigenvalues cross each 
other. 

6. Discussion 

The most important observation is that the inclusion of potential energy in the kinetic 
equations has a strong influence. This can be seen by comparing figure 7 to figure 9. For 
all wavelengths considered the kinetic mode describing the exchange of kinetic and 
potential energy (exchange mode) and its extension to small wavelengths decays slower 
than any other kinetic mode. For large wavelengths? however, the difference is not that 
iarge. The  decay rate of the exchange mode falls off very rapidly with k so that even for 
relatively long wavelengths it becomes as sma!l as or  smaller than the decay rate of 
the hydrodynamic modes. This implies that the applicability of the Chapman-Enskog 
procedure is restricted to really hydrodynamic wavelengths. As is the case for the revised 

0 6 12 

k a  

Figure 10. As in figure 7 but here no’ = 0.6. 



Linear kinetic theory of the square-wellfluid 25 1 

Enskog equation for hard spheres. there is a pronounced minimum in the extended heat 
mode decay rate at k o  - 2n. A study of the projection of the modes reveals that in the 
neighbourhood of the minimum the eigenfunction is almost the number density (unit 
function). The mechanism that causes this minimum is the same for hard spheres and a 
square well; deviations from equilibrium of the local density can decay through diffusion 
only. From table 1 it can be seen that a factor of l / q S ( k )  is involved. which has a 
minimum at k o  - 276. 

For even shorter wavelengths the extended exchange mode is found to be almost 
identical to the potential energy temperature, which essentially decouples from one- 
particle quantities. However, some reservation is called for, as the moment method 
becomes unreliable at very short wavelengths. There a better approach would be using 
the BGK method. 

Preliminary results of molecular dynamics (MD) simulations on a square-well fluid 
indeed show evidence for the presence of a low-lying exchange mode, but no such mode 
has been found in simulations for a Lennard-Jones fluid at high densities (de Schepper 
et a1 1988). Therefore the low-lying mode may be a peculiarity of the square-well 
interaction. Further analysis is in progress of the eigenvalues and eigen-modes in the 
decay spectrum of equilibrium time correlation functions as obtained from MD simu- 
lations on the square-well fluid. A comparison between these and our theoretical pre- 
dictions will be made in a forthcoming paper. 

In addition we will use the results obtained here in an extended mode coupling 
calculation for the velocity and stress tensor autocorrelation functions (de Schepper et 
a1 1986. Kirkpatrick and Nieuwoudt 1986). Since the shear viscosity depends strongly 
on the depth of the square well (Michels and Trappeniers 1980). this ought to provide a 
sensitive test of extended mode coupling theory. 

Acknowledgments 

Two of us (JL and HvB) thank the SUNY at Stony Brook for its hospitality during a 
visit. We also owe thanks to 6 Stell and J Karkheck for useful suggestions and H Rynja 
for useful comments. This work was partly supported by the NATO Research Grant 
No 419/82 and NSF Grant CHE 8421124. 

Appendix 1. Calculation of the functional derivatives 

The pair correlation function g 2  is defined as 

where 

( A l . l )  

(A1.2) 
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Using (2.4) for p N  we find that 

n. 
= N ( N  - 1) i d u l  d u 2  dx3  . . . dx.?' 6(r - r i )p s (x l , .  . . , xIv13t7 B )  

i = l  

- nz(r.1, r2)?2(r) 

= [S(r - r l )  + S(r  - r2>]n2(r1, r 2 )  + n g ( r l ,  r2, r) 

- n2G.17 rz)n(r). (A1.3) 

Now (3.7) follows. Similarly we have 

= fiV(h' - 1) 1 d r '  q(1r - r'i) I d u l  d u 2  dxg . . . dx,, 6(r  - r i )  
i#j 

x W' -q)P 'Y(xl> .  . '  >X'\IA>P) + n 2 ( r , . r 2 ) 4 4  (A1.4) 

from which the various terms in (3.8) can be found. 

Appendix 2. Simplification of the linear kinetic equations 

Here we will show how the last two terms in (4.1) are simplified. Using (3.7) we obtain 

where an integration over ud has been inserted and we have used the fact that T12 
commutes with any velocity-independent function that is continuous in rl2. The second 
BBGKY equation evaluated in equilibrium can be written as 
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where we have used 

(A2.4) 

which follows from (3.9). 

constant we have 
The other functional derivative can be treated in an analogous manner. Keeping A 
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by repeatedly using the BBGKY hierarchy equations evaluated in equilibrium. Here L ,  is 
the free-streaming part of the Liouville operator (see Karkheck et a1 1985) 

L 0 -  - -C.u i .v i .  (A2.6) 
I 

The integrands of the first two terms in (A2.5) can be recognised as 

-! j. 

and the other terms can be calculated. The finai result is 

(A2.7) 

x [6/3(rl) + SP(r2)][O(v12 . i,, - U,)  - e-PEC3( -u12 - i 1 2 ) ] .  (A2.8) 

We now turn to the kinetic equation (4.2) for the potential energy density. Sub- 
stituting (3.7) and (3.8) into (4.2), performing the velocity integrations and noticing that 
f o r n 2 2  

gn(r1,rl - ? 1 2 R + > . . .  7 r n ) = e-@ gtlb.1, rl - t12R- > . . ' > r,) ('42.9) 

we find that 

( ~ / 2 )  1 d v l  1 dx2 1u12 PI2/[@(ul2 Pl2 - u,)6(r12 - R - )  

- O(-u12 -t12)8(r12 - R + ) ]  

(A2.10) 

Finally we also used the continuity equation, 

dn(r1, t ) /d t  = -no91 * j dx, ulfm(ul)h(xl, t )  (A2.11) 

in the derivation of (4.5). 
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